Между рядом Фибоначчи и треугольником Паскаля существует любопытная связь. Образуем для каждой восходящей диагонали треугольника Паскаля сумму всех стоящих на этой диагонали чисел. Получим для первой диагонали 1, для второй 1, для третьей 2, для четвертой 3, для пятой 5. Мы получили не что иное, как пять начальных чисел Фибоначчи. Оказывается, что всегда сумма чисел n-й диагонали есть n-е число Фибоначчи. Для доказательства интересующего нас предложения достаточно показать, что сумма всех чисел, составляющих n-ю и (n+1) диагонали треугольника Паскаля равна сумме чисел, составляющих его т+2-ю диагональ.
Вам также может понравиться
Данную задачу можно решить с помощью таблицы, что я и сделал.
00
Различия могут быть, если заграничные учебники составлены
00
8x^2+4x+6x+3 (8x^2+4x) + (6x+3) 4x (2x+1) + 3 (2x+1)
00
http://fb.ru/article/363385/kak-reshat-algebraicheskie-drobi-teoriya-i-praktika
00
1.Математика. Задания высокой и повышенной сложности
00
Для того чтобы построить график функции, заданной несколькими
00
x^2 – 0,04 <= 0 x^2<=0,04 берем корень из обеих
00
Квадрат суммы: (a+b)2=a2+2ab+b2 Квадрат разности: (a−b)2=a2−2ab+b2
00